Saturday, 30 March 2019

Moving average filter code


Resposta de Freqüência do Filtro de Média Corrente A resposta de freqüência de um sistema LTI é a DTFT da resposta de impulso, A resposta de impulso de uma média móvel de L é de média móvel. Uma vez que o filtro de média móvel é FIR, a resposta de freqüência reduz-se à soma finita We Pode usar a identidade muito útil para escrever a resposta de freqüência como onde temos deixar ae menos jomega. N 0 e M L menos 1. Podemos estar interessados ​​na magnitude desta função para determinar quais freqüências passam pelo filtro sem atenuação e quais são atenuadas. Abaixo está um gráfico da magnitude desta função para L 4 (vermelho), 8 (verde) e 16 (azul). O eixo horizontal varia de zero a pi radianos por amostra. Observe que, em todos os três casos, a resposta de freqüência tem uma característica de passagem baixa. Uma componente constante (frequência zero) na entrada passa através do filtro sem ser atenuada. Determinadas frequências mais elevadas, tais como pi 2, são completamente eliminadas pelo filtro. No entanto, se a intenção era projetar um filtro lowpass, então não temos feito muito bem. Algumas das freqüências mais altas são atenuadas apenas por um fator de cerca de 110 (para a média móvel de 16 pontos) ou 13 (para a média móvel de quatro pontos). Podemos fazer muito melhor do que isso. O gráfico acima foi criado pelo seguinte código Matlab: omega 0: pi400: pi H4 (14) (1-exp (-iomega4)) (1-exp (-iomega)) H8 (18) (1-exp (- (1-exp (-iomega)) (1-exp (-iomega)) traço (omega, abs (H4) abs (H8) abs ( H16)) eixo (0, pi, 0, 1) Cópia de direitos autorais 2000- - Universidade da Califórnia, BerkeleyMoving Average Filter (MA filter) Loading. O filtro de média móvel é um filtro simples Low Pass FIR (Finite Impulse Response) comumente usado para alisar uma matriz de datasign amostrada. Ele toma M amostras de entrada de cada vez e pegue a média dessas M-amostras e produz um único ponto de saída. É uma estrutura de LPF (Low Pass Filter) muito simples que vem à mão para cientistas e engenheiros para filtrar componentes indesejados ruidosos dos dados pretendidos. À medida que o comprimento do filtro aumenta (o parâmetro M) a suavidade da saída aumenta, enquanto que as transições nítidas nos dados são tornadas cada vez mais sem corte. Isto implica que este filtro tem uma excelente resposta no domínio do tempo mas uma resposta de frequência pobre. O filtro MA executa três funções importantes: 1) Toma M pontos de entrada, calcula a média desses pontos M e produz um único ponto de saída 2) Devido aos cálculos computacionais envolvidos. O filtro introduz uma quantidade definida de atraso 3) O filtro age como um Filtro de Passagem Baixa (com resposta de domínio de freqüência fraca e uma boa resposta de domínio de tempo). Código Matlab: O código matlab seguinte simula a resposta no domínio do tempo de um filtro M-point Moving Average e também traça a resposta de freqüência para vários comprimentos de filtro. Time Domain Response: No primeiro gráfico, temos a entrada que está entrando no filtro de média móvel. A entrada é ruidosa e nosso objetivo é reduzir o ruído. A figura seguinte é a resposta de saída de um filtro de média móvel de 3 pontos. Pode-se deduzir da figura que o filtro de média móvel de 3 pontos não fez muito na filtragem do ruído. Nós aumentamos os toques de filtro para 51 pontos e podemos ver que o ruído na saída reduziu muito, que é descrito na próxima figura. Nós aumentamos as derivações para 101 e 501 e podemos observar que mesmo que o ruído seja quase zero, as transições são drasticamente apagadas (observe a inclinação de cada lado do sinal e compare-as com a transição ideal da parede de tijolo em Nossa entrada). Resposta de Freqüência: A partir da resposta de freqüência pode-se afirmar que o roll-off é muito lento ea atenuação da banda de parada não é boa. Dada esta atenuação de banda de parada, claramente, o filtro de média móvel não pode separar uma banda de freqüências de outra. Como sabemos, um bom desempenho no domínio do tempo resulta em fraco desempenho no domínio da freqüência e vice-versa. Em suma, a média móvel é um filtro de suavização excepcionalmente bom (a ação no domínio do tempo), mas um filtro de passagem baixa excepcionalmente ruim (a ação no domínio da freqüência). Links externos: Livros recomendados: Sidebar principal Documentação Este exemplo mostra como Usar filtros de média móvel e reamostragem para isolar o efeito de componentes periódicos da hora do dia em leituras de temperatura horária, bem como remover o ruído de linha indesejável de uma medida de voltagem em malha aberta. O exemplo também mostra como suavizar os níveis de um sinal de relógio enquanto preserva as bordas usando um filtro mediano. O exemplo também mostra como usar um filtro Hampel para remover outliers grandes. Motivação A suavização é como descobrimos padrões importantes em nossos dados enquanto deixamos de lado coisas que não são importantes (ou seja, ruído). Utilizamos a filtragem para realizar este alisamento. O objetivo do alisamento é produzir mudanças lentas no valor de modo que seu mais fácil ver tendências em nossos dados. Às vezes, quando você examinar os dados de entrada, você pode desejar suavizar os dados para ver uma tendência no sinal. No nosso exemplo, temos um conjunto de leituras de temperatura em Celsius tomadas a cada hora no Aeroporto Logan para todo o mês de janeiro de 2017. Note que podemos ver visualmente o efeito que a hora do dia tem sobre as leituras de temperatura. Se você está interessado somente na variação diária da temperatura durante o mês, as flutuações de hora em hora só contribuem o ruído, que pode fazer as variações diárias difíceis de discernir. Para remover o efeito da hora do dia, gostaríamos agora de suavizar nossos dados usando um filtro de média móvel. Um Filtro de Média Móvel Em sua forma mais simples, um filtro de média móvel de comprimento N toma a média de cada N amostras consecutivas da forma de onda. Para aplicar um filtro de média móvel a cada ponto de dados, construímos nossos coeficientes de nosso filtro de modo que cada ponto seja igualmente ponderado e contribua 124 para a média total. Isso nos dá a temperatura média ao longo de cada período de 24 horas. Filter Delay Note que a saída filtrada está atrasada em cerca de doze horas. Isto é devido ao fato de que nosso filtro de média móvel tem um atraso. Qualquer filtro simétrico de comprimento N terá um atraso de (N-1) 2 amostras. Podemos contabilizar esse atraso manualmente. Extraindo Diferenças Médicas Alternativamente, também podemos usar o filtro de média móvel para obter uma melhor estimativa de como a hora do dia afeta a temperatura global. Para fazer isso, primeiro, subtraia os dados suavizados das medições de temperatura por hora. Em seguida, segmente os dados diferenciados em dias e tome a média em todos os 31 dias do mês. Extraindo o Envelope de Pico Às vezes gostaríamos também de ter uma estimativa suavemente variável de como os altos e baixos do nosso sinal de temperatura mudam diariamente. Para fazer isso, podemos usar a função envelope para conectar altos e baixos extremos detectados em um subconjunto do período de 24 horas. Neste exemplo, garantimos que haja pelo menos 16 horas entre cada extrema alta e extrema baixa. Podemos também ter uma noção de como os altos e baixos tendem tomando a média entre os dois extremos. Filtros de Média Móvel Ponderada Outros tipos de filtros de média móvel não pesam igualmente cada amostra. Outro filtro comum segue a expansão binomial de (12,12) n Este tipo de filtro se aproxima de uma curva normal para grandes valores de n. É útil para filtrar o ruído de alta freqüência para pequenas n. Para encontrar os coeficientes para o filtro binomial, convolve 12 12 com ele mesmo e então convolua iterativamente a saída com 12 12 um número prescrito de vezes. Neste exemplo, use cinco iterações totais. Outro filtro um pouco semelhante ao filtro de expansão gaussiano é o filtro de média móvel exponencial. Este tipo de filtro de média móvel ponderada é fácil de construir e não requer um tamanho de janela grande. Você ajusta um filtro de média móvel ponderado exponencialmente por um parâmetro alfa entre zero e um. Um valor maior de alfa terá menos suavização. Amplie as leituras durante um dia. Selecione a sua média de paísSimples média móvel médiaA média móvel simples Você é encorajado a resolver esta tarefa de acordo com a descrição da tarefa, usando qualquer idioma que você conhece. Calculando a média móvel simples de uma série de números. Crie um functioncloisstance stateful que leva um período e retorna uma rotina que leva um número como argumento e retorna uma média móvel simples de seus argumentos até agora. Uma m�ia m�el simples �um m�odo para calcular uma m�ia de uma corrente de n�eros calculando apenas a m�ia dos �timos n�eros de 160 P 160 a partir da corrente 160, em que 160 P 160 �conhecido como o per�do. Ele pode ser implementado chamando uma rotina de iniciação com 160 P 160 como argumento, 160 I (P), 160 que deve retornar uma rotina que, quando chamada com membros individuais, sucessivos de um fluxo de números, calcula a média de Para), os últimos 160 P 160 deles, permite chamar este 160 SMA (). A palavra 160 stateful 160 na descrição da tarefa refere-se à necessidade de 160 SMA () 160 lembrar certas informações entre as chamadas para ela: 160 O período, 160 P 160 Um contêiner ordenado de pelo menos os últimos 160 P 160 números de cada um dos Suas chamadas individuais. Stateful 160 também significa que chamadas sucessivas para 160 I (), 160 o inicializador, 160 devem retornar rotinas separadas que não 160 não compartilham o estado salvo para que possam ser usadas em dois fluxos de dados independentes. Pseudo-código para uma implementação de 160 SMA 160 é: Esta versão usa uma fila persistente para conter os valores p mais recentes. Cada função retornada de init-moving-average tem seu estado em um átomo contendo um valor de fila. Esta implementação usa uma lista circular para armazenar os números dentro da janela no início de cada ponteiro de iteração refere-se à célula de lista que contém o valor apenas movendo para fora da janela e para ser substituído com o valor apenas adicionado. Usando um fechamento editar Atualmente, este sma não pode ser nogc porque ele aloca um encerramento no heap. Alguma análise de escape pode remover a alocação de heap. Usando uma edição de estrutura Esta versão evita a alocação de heap do fechamento mantendo os dados no quadro de pilha da função principal. Mesmo resultado: Para evitar que as aproximações de ponto flutuante sigam se acumulando e crescendo, o código poderia executar uma soma periódica em toda a matriz de filas circulares. Esta implementação produz dois estados de compartilhamento de objetos (função). É idiomático em E separar a entrada da saída (ler a partir da escrita) em vez de combiná-los em um único objeto. A estrutura é a mesma que a implementação do Desvio PadrãoE. O programa elixir abaixo gera uma função anônima com um período embutido p, que é usado como o período da média móvel simples. A função de execução lê entrada numérica e passa para a função anônima recém-criada e, em seguida, inspeciona o resultado para STDOUT. A saída é mostrada abaixo, com a média, seguida da entrada agrupada, formando a base de cada média móvel. Erlang tem fechamentos, mas variáveis ​​imutáveis. Uma solução então é usar processos e uma simples mensagem passando API baseada. As linguagens de matriz têm rotinas para calcular os avarages de deslizamento para uma dada seqüência de itens. É menos eficiente para loop como nos comandos a seguir. Solicita continuamente uma entrada I. Que é adicionado ao final de uma lista L1. L1 pode ser encontrado pressionando 2ND1, ea média pode ser encontrada em ListOPS Pressione ON para terminar o programa. Função que retorna uma lista contendo os dados médios do argumento fornecido Programa que retorna um valor simples em cada invocação: list é a média da lista: p é o período: 5 retorna a lista média: Exemplo 2: Usando o programa movinav2 (i , 5) - Inicializando o cálculo da média móvel e definindo o período de 5 movinav2 (3, x): x - novos dados na lista (valor 3), e o resultado será armazenado na variável x e exibido movinav2 (4, x) : X - novos dados (valor 4), eo novo resultado será armazenado na variável x, e exibido (43) 2. Descrição da função movinavg: variável r - é o resultado (a lista média) que será retornada variável i - é a variável de índice, e aponta para o fim da sub-lista a lista sendo calculada a média. Variável z - uma variável auxiliar A função usa a variável i para determinar quais valores da lista serão considerados no cálculo da média seguinte. Em cada iteração, a variável i aponta para o último valor na lista que será usado no cálculo médio. Portanto, só precisamos descobrir qual será o primeiro valor na lista. Geralmente bem tem que considerar p elementos, então o primeiro elemento será o indexado por (i-p1). No entanto, nas primeiras iterações, esse cálculo será normalmente negativo, de modo que a seguinte equação irá evitar índices negativos: max (i-p1,1) ou, arranjar a equação, max (i-p, 0) 1. Mas o número de elementos nas primeiras iterações também será menor, o valor correto será (índice final - começar o índice 1) ou, arranjando a equação, (i - (max (ip, 0) 1) e então , (I-max (ip, 0)). A variável z possui o valor comum (max (ip), 0), então o beginindex será (z1) eo numberofelements será (iz) mid (list, z1, iz) retornará a lista de valor que será a soma média .) Irá somá-los soma (.) (Iz) ri irá média deles e armazenar o resultado no lugar apropriado na lista de resultados fp1 cria uma aplicação parcial fixando o (neste caso) o segundo e terceiro parâmetros

No comments:

Post a Comment